Изображения по запросу «throwing the cube to the screen»

Технология секвенирования одноклеточной РНК (scRNA-seq) дает возможность изучать биологические проблемы на клеточном уровне. Идентификация типов отдельных клеток с помощью неконтролируемой кластеризации является основной целью анализа данных scRNA-seq. Хотя недавно был выдвинут ряд предложений по методам кластеризации отдельных ячеек, лишь немногие из них учитывали как поверхностную, так и глубокую потенциальную информацию. Поэтому мы предлагаем основанный на автоэнкодировании графиков метод кластеризации интеграции отдельных ячеек, scGASI. Основываясь на нескольких наборах функций, scGASI объединяет глубокое встраивание функций и восстановление сходства данных в единой структуре для изучения согласованной матрицы сходства между ячейками. scGASI сначала создает несколько наборов функций. Затем, чтобы извлечь глубокую потенциальную информацию, встроенную в данные, scGASI использует графический автоэнкодер (GAEs) для изучения низкоразмерного скрытого представления данных. Далее, чтобы эффективно объединить глубокую потенциальную информацию в пространстве встраивания и неглубокую информацию в необработанном пространстве, мы разрабатываем многоуровневую стратегию интеграции ядра для самовыражения. Эта стратегия использует модель самовыражения ядра с многоуровневым объединением подобий для изучения матрицы подобия, разделяемой необработанными пространствами и пространствами встраивания данного набора функций, и механизм консенсусного обучения для изучения консенсусной матрицы сходства по всем наборам функций. Наконец, консенсусная матрица аффинности используется для спектральной кластеризации, визуализации и идентификации генных маркеров. Крупномасштабная проверка реальных наборов данных показывает, что scGASI обладает более высокой точностью кластеризации, чем многие популярные методы кластеризации., фото

Технология секвенирования одноклеточной РНК (scRNA-seq) дает возможность изучать биологические проблемы на клеточном уровне. Идентификация типов отдельных клеток с помощью неконтролируемой кластеризации является основной целью анализа данных scRNA-seq. Хотя недавно был выдвинут ряд предложений по методам кластеризации отдельных ячеек, лишь немногие из них учитывали как поверхностную, так и глубокую потенциальную информацию. Поэтому мы предлагаем основанный на автоэнкодировании графиков метод кластеризации интеграции отдельных ячеек, scGASI. Основываясь на нескольких наборах функций, scGASI объединяет глубокое встраивание функций и восстановление сходства данных в единой структуре для изучения согласованной матрицы сходства между ячейками. scGASI сначала создает несколько наборов функций. Затем, чтобы извлечь глубокую потенциальную информацию, встроенную в данные, scGASI использует графический автоэнкодер (GAEs) для изучения низкоразмерного скрытого представления данных. Далее, чтобы эффективно объединить глубокую потенциальную информацию в пространстве встраивания и неглубокую информацию в необработанном пространстве, мы разрабатываем многоуровневую стратегию интеграции ядра для самовыражения. Эта стратегия использует модель самовыражения ядра с многоуровневым объединением подобий для изучения матрицы подобия, разделяемой необработанными пространствами и пространствами встраивания данного набора функций, и механизм консенсусного обучения для изучения консенсусной матрицы сходства по всем наборам функций. Наконец, консенсусная матрица аффинности используется для спектральной кластеризации, визуализации и идентификации генных маркеров. Крупномасштабная проверка реальных наборов данных показывает, что scGASI обладает более высокой точностью кластеризации, чем многие популярные методы кластеризации., фото

Культовое фото, ракурс чуть выше: Атмосферная солнечная сцена в венской кофейне: на задней стене светло-розовая неоновая надпись

Культовое фото, ракурс чуть выше: Атмосферная солнечная сцена в венской кофейне: на задней стене светло-розовая неоновая надпись "aida", написанная прописными буквами, в то время как очень яркий утренний солнечный свет отбрасывает яркие солнечные пятна через окна, и кажется, что вся сцена светится. Миниатюрная молодая блондинка сидит за столом с чашкой венского меланжа. Перед ней: Крупный план точного светло-розового кубика, покрытого полностью сахарной глазурью, размером примерно 5 см, с мягкими закругленными краями, сверху на кубике лежит засахаренная половинка красной вишни без ножки. Розовый кубик лежит на белой фарфоровой тарелке с изящным золотым ободком в венской кофейне на белом мраморном столике. Темно-красные пионы присутствуют в жестяных вазах на всех кофейных столиках во всем зале. Hasselblad H6D, зернистость пленки, естественный яркий солнечный свет, раздутые световые ободки, высокая контрастность, 4k, фото, кинематографический, продукт