Изображения по запросу «she is british and has a large social media following»

Фото: В ярко освещенном классе начальной школы в Японии маленькая девочка около 10 лет стоит перед большой чистой классной доской. У нее короткие прямые черные волосы, заплетенные в две косички, и она одета в белую блузку с короткими рукавами и темно-синюю юбку, которая является стандартной формой японской начальной школы. Ее маленький рюкзак висит на деревянном стуле рядом с ней. В правой руке она держит кусок белого мела, а левая рука покоится на бедре. Классная доска позади нее заполнена различными математическими уравнениями, геометрическими фигурами и линиями с цифрами, указывающими на то, что урок математики в разгаре. Ее глаза, широко раскрытые от смеси любопытства и недоумения, сфокусированы на камере. Она слегка наклоняет голову вправо, как будто обдумывает сложность уравнений. Рядом с ней появляется красочный речевой пузырь, возможно, нарисованный пастельным мелом. Внутри речевого пузыря текст гласит:

Фото: В ярко освещенном классе начальной школы в Японии маленькая девочка около 10 лет стоит перед большой чистой классной доской. У нее короткие прямые черные волосы, заплетенные в две косички, и она одета в белую блузку с короткими рукавами и темно-синюю юбку, которая является стандартной формой японской начальной школы. Ее маленький рюкзак висит на деревянном стуле рядом с ней. В правой руке она держит кусок белого мела, а левая рука покоится на бедре. Классная доска позади нее заполнена различными математическими уравнениями, геометрическими фигурами и линиями с цифрами, указывающими на то, что урок математики в разгаре. Ее глаза, широко раскрытые от смеси любопытства и недоумения, сфокусированы на камере. Она слегка наклоняет голову вправо, как будто обдумывает сложность уравнений. Рядом с ней появляется красочный речевой пузырь, возможно, нарисованный пастельным мелом. Внутри речевого пузыря текст гласит: "Я не знаю, как выполнить этот расчет, и я никогда не пробовал это"., фотография, мода, кинематографическая, портретная фотография

Технология секвенирования одноклеточной РНК (scRNA-seq) дает возможность изучать биологические проблемы на клеточном уровне. Идентификация типов отдельных клеток с помощью неконтролируемой кластеризации является основной целью анализа данных scRNA-seq. Хотя недавно был выдвинут ряд предложений по методам кластеризации отдельных ячеек, лишь немногие из них учитывали как поверхностную, так и глубокую потенциальную информацию. Поэтому мы предлагаем основанный на автоэнкодировании графиков метод кластеризации интеграции отдельных ячеек, scGASI. Основываясь на нескольких наборах функций, scGASI объединяет глубокое встраивание функций и восстановление сходства данных в единой структуре для изучения согласованной матрицы сходства между ячейками. scGASI сначала создает несколько наборов функций. Затем, чтобы извлечь глубокую потенциальную информацию, встроенную в данные, scGASI использует графический автоэнкодер (GAEs) для изучения низкоразмерного скрытого представления данных. Далее, чтобы эффективно объединить глубокую потенциальную информацию в пространстве встраивания и неглубокую информацию в необработанном пространстве, мы разрабатываем многоуровневую стратегию интеграции ядра для самовыражения. Эта стратегия использует модель самовыражения ядра с многоуровневым объединением подобий для изучения матрицы подобия, разделяемой необработанными пространствами и пространствами встраивания данного набора функций, и механизм консенсусного обучения для изучения консенсусной матрицы сходства по всем наборам функций. Наконец, консенсусная матрица аффинности используется для спектральной кластеризации, визуализации и идентификации генных маркеров. Крупномасштабная проверка реальных наборов данных показывает, что scGASI обладает более высокой точностью кластеризации, чем многие популярные методы кластеризации., фото

Технология секвенирования одноклеточной РНК (scRNA-seq) дает возможность изучать биологические проблемы на клеточном уровне. Идентификация типов отдельных клеток с помощью неконтролируемой кластеризации является основной целью анализа данных scRNA-seq. Хотя недавно был выдвинут ряд предложений по методам кластеризации отдельных ячеек, лишь немногие из них учитывали как поверхностную, так и глубокую потенциальную информацию. Поэтому мы предлагаем основанный на автоэнкодировании графиков метод кластеризации интеграции отдельных ячеек, scGASI. Основываясь на нескольких наборах функций, scGASI объединяет глубокое встраивание функций и восстановление сходства данных в единой структуре для изучения согласованной матрицы сходства между ячейками. scGASI сначала создает несколько наборов функций. Затем, чтобы извлечь глубокую потенциальную информацию, встроенную в данные, scGASI использует графический автоэнкодер (GAEs) для изучения низкоразмерного скрытого представления данных. Далее, чтобы эффективно объединить глубокую потенциальную информацию в пространстве встраивания и неглубокую информацию в необработанном пространстве, мы разрабатываем многоуровневую стратегию интеграции ядра для самовыражения. Эта стратегия использует модель самовыражения ядра с многоуровневым объединением подобий для изучения матрицы подобия, разделяемой необработанными пространствами и пространствами встраивания данного набора функций, и механизм консенсусного обучения для изучения консенсусной матрицы сходства по всем наборам функций. Наконец, консенсусная матрица аффинности используется для спектральной кластеризации, визуализации и идентификации генных маркеров. Крупномасштабная проверка реальных наборов данных показывает, что scGASI обладает более высокой точностью кластеризации, чем многие популярные методы кластеризации., фото